Adaptive Wake and Sleep Detection for Wearable Systems
نویسندگان
چکیده
Sleep problems and disorders have a serious impact on human health and wellbeing. The rising costs for treating sleep-related chronic diseases in industrialized countries demands efficient prevention. Low-cost, wearable sleep / wake detection systems which give feedback on the wearer’s "sleep performance" are a promising approach to reduce the risk of developing serious sleep disorders and fatigue. Not all bio-medical signals that are useful for sleep / wake discrimination can be easily recorded with wearable systems. Sensors often need to be placed in an obtrusive location on the body or cannot be efficiently embedded into a wearable frame. Furthermore, wearable systems have limited computational and energetic resources, which restrict the choice of sensors and algorithms for online processing and classification. Since wearable systems are used outside the laboratory, the recorded signals tend to be corrupted with additional noise that influences the precision of classification algorithms. In this thesis we present the research on a wearable sleep / wake classifier system that relies on cardiorespiratory (ECG and respiratory effort) and activity recordings and that works autonomously with minimal user interaction. This research included the selection of optimal signals and sensors, the development of a custom-tailored hardware demonstrator with embedded classification algorithms, and the realization of experiments in real-world environments for the customization and validation of the system. The processing and classification of the signals were based on Fourier transformations and artificial neural networks that are efficiently implementable into digital signal controllers. Literature analysis and empiric measurements revealed that cardiorespiratory signals are more promising for a wearable sleep / wake classification than clinically used signals such as brain potentials. The experiments conducted during
منابع مشابه
Adaptive Sleep-Wake Discrimination for Wearable Devices
Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evalua...
متن کاملActigraphy-based Sleep/Wake Pattern Detection using Convolutional Neural Networks
Common medical conditions are often associated with sleep abnormalities. Patients with medical disorders often suffer from poor sleep quality compared to healthy individuals, which in turn may worsen the symptoms of the disorder. Accurate detection of sleep/wake patterns is important in developing personalized digital markers, which can be used for objective measurements and efficient disease m...
متن کاملSleepic - Developments for a Wearable On-line Sleep and Wake Discrimination System
The design of wearable systems comes with constraints in computational and power resources. We describe the development of customized hardware for the wearable discrimination of human sleep and wake based on cardio-respiratory signals. The device was designed for efficient and low-power computation of Fast Fourier Transforms and artificial neural networks required for the on-line classification...
متن کاملAn ultra low power wake-up signal decoder for wireless nodes activation in Internet of Things technology
This paper proposes a new structure for digital address decoders based on flip-flops with application in wake-up signal generators of wireless networks nodes. Such nodes equipped with this device can be utilized in Internet of Things applications where the nodes are dependent on environment energy harvesting to survive for a long time. Different parts in these wireless nodes should have an e...
متن کاملEffect of Acute and Chronic Heat Exposure on Frequency of EEG Components in Different Sleep-Wake State in Young Rats
The recent literatures indicate that central nervous system (CNS) is highly vulnerable to systemic hyperthermia induced by whole body heating on conscious animals. In the present study, cerebral electrical activity or EEG (electroencephalogram) following exposure to high environmental heat has been studied in moving rats. Rats were divided into three group (i) acute heat stress-subjected to a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009